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Abstract. This article presents analyses of retrospective seasonal forecasts of snow accumulation. Re-forecasts with 4 months

lead time from two coupled atmosphere-ocean general circulation models (NCEP CFSv2 and MetOffice GloSea5) drive the

Alpine Water balance and Runoff Estimation model (AWARE) in order to predict mid-winter snow accumulation in the Inn

headwaters. As the snowpack is a hydrological storage that evolves during the winter season, it is strongly dependent on

precipitation totals of the previous months. Climate model (CM) predictions of precipitation totals integrated from November5

to February (NDJF) compare reasonably well with observations. This predictive skill is retained in subsequent water balance

simulations when snow water equivalent (SWE) in February is considered. Given the AWARE simulations driven by observed

meteorological fields as a benchmark for SWE analyses, the correlation achieved using GloSea5-AWARE SWE predictions is

r = 0.57. The tendency of SWE anomalies (i.e. the sign of anomalies) is correctly predicted in 11 of 13 years. For CFSv2, the

corresponding values are r = 0.28 and 7 of 13 years. The results suggest that some seasonal predictions may be capable of10

predicting tendencies of hydrological model storages in parts of Europe.

1 Introduction

Seasonal predictions are an emerging new field in hydrology (e.g., Yuan et al., 2015; Svensson et al., 2015; Mackay et al., 2015)

complementing current progress in predicting long-term developments in changed hydrological conditions as a consequence of

anthropogenic greenhouse gas emission. In contrast to climate change projections, seasonal predictions focus on hydrological15

states of the upcoming months from their dependence on initial states (Warner, 2011). These can provide “Climate Services”:

A set of tools, products and information, serving decision makers and practitioners and bringing all types of information on

climate research into practice at all levels of society (Vaughan and Dessai, 2014). This makes them relevant for detecting

anticipated short-term changes in hydrological systems as requested by international research programmes such as “World

Climate Research Programme” (WCRP, e.g., Kirtman and Pirani, 2009), “Future Earth” (Greenslade and Berkhout, 2014),20

and more specialised programmes like, e.g., the International Network for Alpine Research Catchment Hydrology (INARCH,
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Pomeroy et al., 2015) which is part of the Global Energy and Water Cycle Exchanges Project (GEWEX, Chahine, 1992). In

this context, seasonal predictions contribute, on the one hand, to cope with the WCRP “Grand Challenges” (Reid et al., 2010),

and are used on the other hand to detect short-term changes in coupled hydrological-societal systems. The latter consideration

of water and humans (Sivapalan et al., 2012) seeks to better understand interactions between society and hydrological systems

for which seasonal predictions can also be seen as relevant. The goal of the current scientific decade of the International5

Association of Hydrological Sciences (IAHS) is to better understand these interactions on different scales of time (Montanari

et al., 2013).

Seasonal outlooks of hydrological variables have been prepared for decades. Observed system states and rules with regional

relevance have been utilised to prepare monthly outlooks (Pagano et al., 2004; Bell et al., 2017). A common way to predict

future hydrological states is to run a hydrological model based on known initial states and force it with ensembles of meteo-10

rological data observed in the past. This methodology is well known and referred to as Ensemble Streamflow Prediction (ESP,

Wood and Lettenmaier, 2008). Its combination with meteorological data as forcing (reverse-ESP) is also subject to recent re-

search on predictability of hydrological systems (e.g. the VESPA approach, Wood et al., 2016). In the last decades, coupled

Atmosphere-Ocean General Circulation Models (AOGCM) have become a viable method for seasonal predictions (Svensson

et al., 2015). These climate model (CM)-based forecasts provide future meteorological/climatological conditions for the next15

weeks (sub-seasonal forecasts), months (seasonal forecasts), or decades (decadal forecasts) on a physical basis rather than on

statistics. An overview about the state-of-the-art of CM-based seasonal predictions is provided by Doblas-Reyes et al. (2013)

and Yuan et al. (2015). Like numerical weather prediction, seasonal forecasts are an initial-state problem since predictions of

the atmospheric states of the upcoming months strongly depend on the initial states of the atmosphere, oceans, land, and sea

ice. In contrast to weather predictions, the need for considering ocean and sea ice dynamics is crucial since these components20

of the climate system affect atmospheric phenomena on time scales beyond typical weather predictions. Another important

difference from numerical weather predictions is the dependence of seasonal predictions on boundary conditions. Like long-

term climate predictions which are based on anthropogenic greenhouse gas emissions, CM-based seasonal predictions require

adequate definitions of boundary conditions (Doblas-Reyes et al., 2013).

The skill of CM-based seasonal predictions is not distributed equally in space and time (Smith et al., 2012; Kim et al.,25

2012; Kirtman et al., 2014). For instance, the skill in Europe is much lower than in the tropics, where phenomena like El

Niño Southern Oscillation (ENSO) are predictable with higher accuracy (Yuan et al., 2015). Current progress on improving

predictability has been recently reported by Scaife et al. (2014) who demonstrated skilful predictions of the North Atlantic

Oscillation, a feature that is relevant for seasonal predictions in Europe. Bruno Soares and Dessai (2015) found that there is a

mismatch in supply and demand regarding seasonal forecast products which is limited by skill levels in some regions although30

the authors also detected additional non-scientific reasons for this mismatch like, e.g., insufficient communication of forecasts

to the users.

In the present study, we focus on a way to make seasonal predictions better exploitable for demands in context of hydro

power generation in the Alps. For this application, it would be interesting to know if the upcoming winter season will be above

or below average regarding the accumulation of snow. The amount of water released as a consequence of snow melt in spring35
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is a key parameter for the management of reservoirs. We present a systematic evaluation in order to detect the predictability of

above and below average snow accumulation. To achieve this goal, CM-based seasonal forecasts are employed as input data

to a water balance model that predicts snow water equivalent (SWE) and runoff in the Inn headwaters. A new aspect of this

work is the focus on hydrological storages instead of instantaneous hydrological fluxes. Considering hydrological storages

together with seasonal predictions currently receives little attention (see, e.g., Sene et al., 2016; Mackay et al., 2015; Bell et al.,5

2017). It is expected that the focus on integrated storages (e.g., mid-winter snow accumulation) is more robust than considering

instantaneous fluxes (e.g., precipitation, runoff) in seasonal predictions.

Based on that, the research question remains: Can we detect above or below average snow conditions on the basis of CM-

based seasonal predictions? To answer this, CM-based and hydrological modelling is applied in an alpine case study. In Section

2 the relevant information about the study area, the climate data, the CM-based seasonal predictions, the water balance model,10

and the methodology for detecting the predictability of snow accumulation are described. In Section 3, the results are presented,

compiled and discussed. Finally, Section 4 provides concluding remarks and an outlook for future work.

2 Material and methods

2.1 Study area

The Inn headwaters catchment upstream of the Kirchbichl gauging station covers an area of 9,310 km2 (see, Fig. 1). Elevations15

in the catchment range between 486 and 4049 m a.s.l., with a mean elevation of approximately 2000 m a.s.l. About 3% of

the catchment area is covered by glaciers. During the winter season runoff is lowest since a major fraction of precipitation

is accumulated to the snow cover. In spring snow melt causes an increase in runoff reaching its maximum in August when

glacier melt is highest. For the period 1985–2009, the average areal precipitation and runoff amount to 1225 mm yr−1 and

1000 mm yr−1, respectively. In the second half of the 20th century, several reservoirs have been built in the study area. Their20

capacity in total is 638 · 106 m3.

2.2 Climate data and seasonal predictions

2.2.1 Climate data

The climate data provided by the HISTALP project (Historical Instrumental Climatological Surface Time Series of the Greater

Alpine Region, Auer et al., 2007) is a suitable dataset for studies on climatology and long-term changes of temperature and25

precipitation in the Alps. The data has been compiled for a long period of time (1800-2010) and includes a dense observational

station network from different countries in the Greater Alpine Region. Moreover, it has been quality checked and homogenised

(Auer et al., 2007; Chimani et al., 2013). Mean temperature and precipitation depth are provided on a grid with a temporal

resolution of one month and a spatial resolution of five minutes (approx. 6 km).
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2.2.2 Climatological forecasts

In the framework of this study, the term "climatological forecasts" refers to simulations based on long-term averages of air tem-

perature and precipitation depth for each month based on the HISTALP data. For instance, considering a climatological forecast

for January, mean air temperature and precipitation depth are computed through averaging each variable over all Januaries in

a multi-year period. This understanding differs from other definitions of climatological forecasts in which a climatological5

forecast is constructed by randomly selecting valid values for January in that period instead of averaging.

2.2.3 Climate model-based seasonal predictions

In this study, two different AOGCMs are utilised as input data for further analyses of seasonal predictions. As outlined earlier,

the requirements of CM-based seasonal predictions exceed the extent of numerical weather predictions with respect to the

forecast horizon and the number of subsystems of the climate system that need to be considered. Due to the extended forecast10

horizon, oceans and sea ice need to be incorporated in the models as well (see, e.g., Smith et al., 2012; Doblas-Reyes et al.,

2013; Yuan et al., 2015). In this study, two different AOGCMs are applied independently:

– NCEP’s (National Centers for Environmental Prediction) Coupled Forecast System model version 2 (CFSv2, Saha et al.,

2014) is an operational seasonal prediction system. Forecasts are initialised four times a day. The horizontal resolution

is 0.5◦(approx. 40 km). In order to derive monthly forecasts, runs between the 8th day of the previous month and the15

7th day of the current month are utilised in order to generate a lagged ensemble. This methodology is proposed by Yuan

et al. (2013) who applied this method to re-forecasts. Since re-forecasts are only available for every 5th day, a typical

ensemble of CFSv2 re-forecasts comprises 24 members per month. The archive of re-forecasts includes data from 1985

to 2009. The maximum lead time is 9 months.

– MetOffice Global Seasonal forecast system version 5 (GloSea5) is a seasonal prediction system that runs operationally20

at the MetOffice (MacLachlan et al., 2015; Scaife et al., 2014). Compared to CFSv2, it has a higher ocean horizontal

resolution (0.25◦, approx. 20 km). The data applied in this study was provided by the SPECS project (“Seasonal-to-

decadal climate Prediction for the improvement of European Climate Services”, http://www.specs-fp7.eu/) and covers

the period between 1996 and 2010. Re-forecasts for winter were used with initial start dates: 25 Oct., 01 Nov., and 09

Nov. For each date, 3 runs are available which gives an ensemble of 9 members per winter. This subset of hindcasts has25

a lead time of 4 months for each run.

Systematic analyses are performed for 1996 – 2009 (the period in which both models are available) . Only those re-forecasts

that start in November are considered. The lead time is limited to 4 months to predict snow conditions in February.

2.3 Water balance simulations using AWARE

The Alpine Water balance and Runoff Estimation model (AWARE, Förster et al., 2016) is a deterministic hydrological model30

operating on a regular grid at one month time steps. The model has been designed to estimate anomalies in hydrological
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variables at the catchment scale from anomalies in meteorological fields predicted by climate models. The coarse temporal

resolution allows one to carry out seasonal predictions considering a large number of individual runs at a minimum of com-

putational costs which justifies the coarse time step. As the study’s focus is on anomalies in seasonal characteristics, using a

monthly scale water balance model is feasible (Kling et al., 2012; Bock et al., 2016) and these models are also applied for

seasonal hydrological predictions (Bell et al., 2017).5

Required meteorological forcing data include both mean monthly air temperature and monthly precipitation totals provided

as grids or station data, which makes the model parsimonious with respect to data requirements. Altitudinal gradients are

applied in order to realistically redistribute temperature and distribution on the model grid resulting in a decrease in temperature

with increasing elevation and an increase in precipitation on the mountains. Even though the model is also capable of reading

shortwave radiation fields (Förster et al., 2016) in order to improve ice melt predictions, a simplified snow- and ice-melt10

simulation using air temperature only is possible. This simplification considers the fact that air temperature and precipitation

are readily available and more predictable compared to some other meteorological fields. In order to perform simulations with

this minimal input of data, the Thornthwaite (1948) evapotranspiration approach is applied. The soil water balance is computed

following the approach of McCabe and Markstrom (2007). A linear storage is applied in order to account for the recession of

runoff typically related to groundwater processes.15

The model assumes a baseline (reference) meteorological dataset for calibration, which is shown in Figure 2 using the

HISTALP data from 1996 to 2009 as the reference period. The Nash-Sutcliffe model efficiency (NSE) amounts to E = 0.92

which might be viewed as very good model performance. As suggested by Schaefli and Gupta (2007), the benchmark Nash-

Sutcliffe model efficiency is computed as well (Eb = 0.45). This benchmark NSE value accounts for strong effects of seasonal-

ity. While the standard NSE indicates if a model is better than the average of observed values, the benchmark NSE proves if the20

model performance exceeds the corresponding value of a simple model that simply predicts long-term averages for each month.

Since the benchmark NSE is also greater than zero, the model is more skillful than applying long-term averages. According

to Klemeš (1986) a split sample test is applied including an independent validation period ranging from 1984 to 1995. The

corresponding NSE and benchmark NSE are 0.91 and 0.25, respectively. As the model performance of the validation period

is comparable to the calibration period, the model is found to be suitable for predictions. The mismatch of runoff simulations25

in winter, especially in March can be attributed to the effects of reservoirs on river flow in the catchment area which are not

represented in the model so far. In this period water is released from seasonal storages which are filled in summer.

Another advantage of the one month time step is the lower complexity with respect to downscaling of climate model data.

Current approaches focus on statistical (e.g., Crochemore et al., 2016) or dynamical downscaling (e.g., Förster et al., 2014)

of coarse atmospheric data fields (e.g., derived by climate models). AWARE builds upon a simple and robust approach which30

is based on anomalies. For instance, Marzeion et al. (2012) successfully add anomalies from other datasets to a reference

climatology to compute glacier mass balances at the global scale. In order to account for different spreads of distributions,

standardised anomalies are considered in our study. According to Wilks (2006) this approach is feasible when “working simul-

taneously with batches of data that are related, but not strictly comparable”. This is a typical situation in case of observational
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data and re-forecasts. Standardised anomalies zx are simply computed for a variable x, taking into consideration its long-term

mean x̄ for a given month and the corresponding empirical standard deviation s̃x (Wilks, 2006):

zx =
x− x̄
s̃x

(1)

Given that two datasets x and y are comparable (e.g., reference climatology and the climatology of re-forecasts), their

standardised anomalies zx and zy might be viewed comparable as well. Based on the assumption that zx = zy , Eq. 1 can be5

rearranged to

x=
y− ȳ
s̃y

· s̃x + x̄. (2)

Anomalies of the climate model (i.e. y− ȳ) can easily be transformed to the climatology of the reference data set (i.e., x).

Mean values and standard deviations are computed separately for each month and climate data set including HISTALP, CFSv2,

and GloSea5. In this way, anomalies predicted by the climate models can be reliably transformed to typical anomalies of the10

observational data.

2.4 Model experiment for analysing the predictability of snow accumulation

The long-term simulations of the water balance provide monthly snapshots of valid system states for each state variable at any

point in time. For each CM-based seasonal prediction run starting in November, system states for SWE, soil moisture, and

groundwater storage computed for October are defined as initial states. In total four AWARE runs driven with different forcing15

datasets are available for each winter season between 1997 and 2009 (November to February, NDJF):

1. HISTALP-AWARE: Long-term continuous run based on observed HISTALP data (see, Sect. 2.2.1 and Fig. 2),

2. CF-AWARE: Climatological forecasts (CF) with average conditions computed using HISTALP (see, Sect. 2.2.2),

3. GloSea5-AWARE: CM-based seasonal forecast using GloSea5, and

4. CFSv2-AWARE: CM-based seasonal forecast using CFSv2.20

The ensemble provided by CM-based seasonal forecasts of meteorological quantities is averaged prior to the water balance

simulations. In general, ensemble seasonal predictions are subject to low signal to noise ratios. The signal in the ensemble

mean is small in most cases and using members individually will mask the signal (Scaife et al., 2014; Eade et al., 2014). In

general, each ensemble member of input data is individually processed in hydrological forecasting, which is why the averaging

is typically implemented afterwards. However, a skill improvement is reported by recent seasonal prediction studies (e.g., Bell25

et al., 2017) in which the concept of averaging is applied prior to hydrological simulations. This approach seems feasible

given that the time step of hydrological simulations is one month. Although the hydrological model is a conceptual model that

mimics the basic physical principles, the temporal scale does not allow to capture the full dynamics of hydrological processes
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that are typically studied on smaller scales. Thus, the coarse temporal resolution of the modelling approach is to a certain

degree “statistical” in nature which justifies the application of mean ensemble inputs. Moreover, the utilisation of standardised

anomalies applied to CM-based seasonal forecasts in the AWARE model accounts for variance corrections to the ensemble

mean values as suggested by Eade et al. (2014). Appropriate uncertainty can also be added to the predictions to ensure reliable

probabilistic forecasts.5

The basin-average time series of these water balance simulations are directly comparable. While the continuous long-term

simulation represents a reference run (#1) serving as benchmark for seasonal predictions, the climatological forecasts (#2) help

to judge whether anomalies will be above or below average. Correlations between the reference run and the water balance

simulations forced by CM-based forecasts (#3 and #4) are computed to assess the predictive skill. Moreover, the tendency or

sign of anomalies is compared through counting the coincidence of above (below) average anomalies in the reference run and10

the seasonal predictions.

3 Results and Discussion

Figure 3(a) demonstrates the annual cycle of modelled SWE. The black dashed line is the mean value of all years. It compares

well with the black bold line which represents the climatological simulations based on AWARE using average air temperature

and precipitation depth for each month. Thus, the climatological forecast is suitable to compute average snow conditions (see15

also Fig. 3(c) which includes the spatial distribution of average SWE in February). Full time series are shown in Fig. 3(b). The

boundary conditions of the climatological forecast are equal in each year. However, the initial conditions differ according to the

initialisation each year in October which is obtained from the long-term run. Figure 3(d) depicts a subset of SWE observations

compiled by Schöber et al. (2016). In contrast to the cited study, which explains the methodology of SWE sampling in detail,

here only stations above 1400 m a.s.l. have been selected in order to better match the average catchment elevation (Sect. 2.1).20

The correlation between computed SWE in February and the SWE observations in February is r = 0.65 (Fig. 3(b) vs. Fig.

3(d)). This comparison should be interpreted with caution. First, despite the fact that a sub-selection of stations that better

match the mean elevation of the catchment has been chosen for this analysis, the full range of elevation bands in the basin

is not fully covered by the observational dataset. Moreover, scaling issues limit spatial and temporal representativeness, since

averaged point-scale measurements recorded on a weekly scale are compared to basin-scale water balance simulation with25

one month time step. However, observed and computed SWE compare reasonably well. This underlines the applicability of

AWARE to predict SWE.

In a next step, anomalies computed using AWARE forced by CM-based seasonal forecasts are compared to the corresponding

values of the reference run (HISTALP-AWARE, #1). This evaluation is demonstrated in Fig. 4 for temperature, precipitation

depth, and SWE in February. Anomalies in temperature and precipitation depth refer to the period November to February30

(NDJF) in each winter and represent average values at the basin scale (i.e. the mean of all grid points of the meteorological

fields in AWARE). In this way, the values are subject to the statical transformations and elevation dependent redistributions as

outlined in Section 2.3. The anomalies of the reference AWARE run driven by HISTALP are shown in the top panels of Fig. 4.
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Their correlation is set to 1 by definition since this run is viewed as reference. The seasonal forecasts computed using AWARE

driven by GloSea5 (center) and CFSv2 (bottom) are also displayed. Correlation coefficients computed for NDJF temperature

anomalies range from r = 0.17 (CFSv2) to r = 0.32 (GloSea5). Tendencies in anomalies (i.e. the prediction of correct signs

of anomalies) also vary between the models. This becomes obvious when counting the shaded areas indicating a mismatch

between the seasonal forecast and the reference run. While GloSea5 correctly predicted the sign of temperature anomalies in5

9 of 13 winters, the hitrate (i.e. the number of correctly predicted states divided by the total number of winters) achieved for

CFSv2 only amounts to 8 of 13.

The skill in precipitation predictions is higher regarding both correlation and hitrate. In the case of GloSea5, the hitrate of

correctly predicted anomalies is 9 of 13 (r = 0.61). As for temperature, the model skill of precipitation predictions computed

by CFSv2 is also lower (hitrate 7 of 13, r = 0.31). However, the number of correctly predicted tendencies might be viewed as10

good results since the seasonal forecasts includes a lead time of 4 months. Single months show lower scores, suggesting that

a temporal integration improves the robustness of results consistent with our approach using hydrological storages rather than

fluxes.

Figure 4(c) highlights that the predictive skill achieved for precipitation depth is also prevailing for SWE in February. Even

though correlation coefficients are slightly lower compared to precipitation depth (GloSea5: r = 0.57, CFSv2: r = 0.28), SWE15

values in February computed by AWARE driven by CM-based forecasts compare well to those of the reference run. The hitrate

achieved using GloSea even reaches 11 of 13 while the hitrate of CFSv2 remains at the level of 7 of 13.

A Bernoulli experiment helps to judge whether these hitrates differ from the performance of a “fair coin” for predicting

above and below average conditions. The null hypothesis is: The hitrate of the seasonal forecasts does not differ from a

random 50:50 probability (binomial test). Given the total number of winters n= 13 and a level of significance of α= 0.05,20

the null hypothesis is rejected for hitrates above 9 of 13. This means that according to the results shown in Fig. 4, for seasonal

predictions of SWE using GloSea5 this test rejects the null hypothesis, indicating significant skill. In contrast, the scores for

CFSv2 are not significant.

Regardless the limitations discussed with respect to observed SWE, the correlations are much lower if the observations

from Fig. 3(d) are involved in skill computations. The correlation between observed anomalies and GloSea5 is r = 0.21 while25

the corresponding value achieved using CFSv2 is only r = 0.11. These values are much lower than the correlations achieved

using the reference run. This finding might also be related to possible mismatches in representativeness between observations

and simulations. However, the comparison between HISTALP-AWARE and the CM-based seasonal forecasts highlights model

skill when using CM-based forecasts. This comparison revealed a reasonably good agreement between seasonal forecasts and

the reference run and the skill of CM-based forecasts is promising.30

Finally, Fig. 5 depicts time series of the water balance of the snow storage for each year and each AWARE model run.

Monthly precipitation (separated for rainfall and snowfall), cumulative snowmelt, and SWE are plotted. Moreover, the snow

accumulation of the reference run (HISTALP-AWARE, #1) and the climatological forecast (CF-AWARE, #2) are displayed.

The latter is subject to the same forcing in each year but is initialised according to the system states of AWARE in late fall. If

the SWE computed by HISTALP-AWARE exceeds the corresponding value of CF-AWARE, above average snow accumulation35
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prevails. Accordingly, the opposite is true for below average conditions. A similar comparison is possible for the predictions

of GloSea5-AWARE and CFSv2. If the CM-based forecast and HISTALP-AWARE simultaneously indicate either above or

below average conditions, a label “HIT” is added to the corresponding seasonal forecast. The overall hitrate is readable from

Fig. 4. Even though monthly precipitation depth differs between HISTALP-AWARE and the CM-based forecasts, the NDJF

precipitation totals might compensate this monthly scale differences resulting in a good match of SWE values in February.5

This is obvious for many of the winter seasons shown in Fig. 5 (e.g., 1998/99 and 2000/01) and confirms the previous finding

that improved model skill is possible when storages instead of instantaneous fluxes are considered.

4 Conclusions

In this study, a systematic evaluation of CM-seasonal winter forecasts starting in November has been performed using a water

balance model. A new method has been developed focussing on hydrological storages instead of instantaneous hydrological10

fluxes. In this way, basin-scale averages of temperature and precipitation depth are temporally integrated in order to achieve

November to February (NDJF) averages and totals, respectively. Given a lead time of 4 months, the application of the water

balance model then allows predicting SWE in February which is relevant for many sectors like water management or hydro

power generation. Based on year-by-year evaluation of re-forecasts using correlation analyses and a Binomial test, the results

achieved using GloSea5 and CFSv2 indicate that dynamical (CM-based) seasonal forecasts can provide skill.15

Regarding predictability, the location of the study area is also of particular interest in the process of interpreting the results.

Due to the fact that the Alps are situated in a transition zone between northern and southern Europe, the influence of large-scale

climate patterns, such as the North Atlantic Oscillation (NAO), should be analysed more detailed in the future. It is also known

that El Niño Southern Oscillation (ENSO) impacts the climate in Europe in late winter and stratospheric sudden warmings are

also important (Ineson and Scaife, 2008; Scaife et al., 2016). A first assessment of possible connections between the NAO on20

the one hand and snow and glacier related states on the other hand only resulted in low correlations (c.f. Beniston and Jungo,

2002; Scherrer et al., 2004; Bartolini et al., 2009; Marzeion and Nesje, 2012). However, in the southern and western parts of the

Alps this relationship between NAO and snow and ice properties might be explained more clearly. Recent skill improvements

regarding CM-based seasonal predictions might explain our detectable skill (Scaife et al., 2014). Future work should address

climatological processes that are related to model skill and involve other basins in different parts of the Alps.25

Besides studying the climatological perspective of predictability, the results also revealed uncertainties involved in hy-

drological modelling using the water balance model and scaling issues regarding the representativeness of point scale SWE

observations. These findings also suggest improvements regarding both the provision of basin-scale SWE observations and the

water balance model as an outlook for future work. Low flow conditions in March might be better predicted if the model would

account for artificial reservoirs in the study area. This feature will be added to the model in the future.30

However, the results of this study show that it is possible to detect skilful signals from dynamical (CM-based) seasonal

predictions of hydrological storages in Europe, where seasonal predictions are still challenging. The results suggest that some

seasonal predictions may be capable of predicting tendencies of hydrological model storages, although the skill of these pre-
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dictions is in many cases low in Europe. The basic idea of this study is that a focus on hydrological storages rather than on

hydrological fluxes might help in exploiting seasonal predictions. The first results of the methodology are promising with

respect to practical applications in which hitrates above 70% might be seen as a reasonable target accuracy. Since snowmelt

predictions are of particular interest in the study area, a similar approach could be applied to CM-based seasonal forecasts

initialised in May. Future research should also address predictability studies in other regions. Moreover, it would be interesting5

to study the predictability of other hydrological storages like, e.g., glaciers, lakes or groundwater. A focus on probabilistic

forecasts also is an interesting prospect for the future.

5 Data availability

– CFSv2 re-forecast data: https://nomads.ncdc.noaa.gov/data/cfsr-rfl-mmda/flxf/
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Figure 1. Map of the Inn headwaters upstream of the Kirchbichl gauging station. Major land use classes are shown along with the topography.
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Figure 2. Specific runoff hydrographs for observed and modelled runoff at Kirchbichl gauging station and the corresponding performance

measures E (Nash-Sutcliffe model efficiency, NSE) and Eb (benchmark NSE).
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Figure 3. Observed and simulated snow states. (a) Range and standard deviation of SWE time series computed for single years and the

corresponding mean monthly averages derived from AWARE using HISTALP data. Average SWE conditions computed using climatolog-

ical historical data are displayed as well. (b) This plot shows the same data but as time series between 1997-2009. (c) Map showing the

average spatial SWE distribution computed for February. (d) SWE observations in February collected from stations in the study area above

1400 m a.s.l. (Schöber et al., 2016). The error bars show the ± 1 standard deviation of observations for each year (see Schöber et al., 2016,

for further details on SWE sampling).
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Figure 4. Anomalies of (a) basin-scale NDJF temperature, (b) NDJF areal precipitation depth, and (c) snow accumulation in February. Water

balance simulations driven by CM-based seasonal forecasts are compared to water balance simulation driven by HISTALP. Shaded areas

indicate years in which the sign of anomalies does not match the reference run.
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Figure 5. Water balance of the basin-scale snow storage for each year and each forcing dataset used for AWARE simulations. CF is the

climatological forecast (longterm averages of HISTALP) which can be viewed as forecast yielding average conditions. The evolution of

snow accumulation is categorized either “HIT” or “–” if the sign of anomalies obtained from HISTALP-AWARE and CM-based AWARE

runs matches or mismatches, respectively.
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